Expression of the third intracellular loop of the delta-opioid receptor inhibits signaling by opioid receptors and other G protein-coupled receptors.

نویسندگان

  • Evangelia Morou
  • Zafiroula Georgoussi
چکیده

To explore the feasibility of developing inhibitors of signaling by opioid receptors and other G protein-coupled receptors (GPCRs) that use the same G protein pool, we investigated the capacity of a minigene encoding the third intracellular loop of the delta-opioid receptor (delta-i3L) to act as competitive antagonist of the receptor-G protein interface interaction. In delta-i3L-expressing cells, the peptide blocked high-affinity agonist binding to both the delta- and the mu-opioid (delta-OR and mu-OR) and attenuated opioid and alpha2-adrenergic receptor (alpha2AR)-dependent [35S]guanosine-5'-O-(3-thio)triphosphate binding. Furthermore, delta-i3L expression resulted in inhibition of delta-, mu-OR-, and alpha2AR-receptor-mediated cAMP accumulation, whereas the cAMP response produced by activation of the beta2-adrenergic receptor was unaffected, suggesting that the inhibitory effects of delta-i3L expression were selective for Gi/Go proteins. Moreover, although delta-i3L expression also attenuated drastically phospholipase C accumulation and Ca2+ release following mu- and delta-OR stimulation, it failed to inhibit carbachol-mediated stimulation of inositol phosphate accumulation in M1-muscarinic receptor-expressing human embryonic kidney 293 cells. Finally, we also examined the effects of delta-i3L expression on the regulation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway. Our results demonstrate that, although ERK activation by mu- and delta-ORs is attenuated by the presence of delta-i3L, ERK activation mediated by alpha2AR remained unaffected. Collectively, our data demonstrate that the delta-i3L can be used as potent inhibitor of G protein signaling for various GPCRs that use a common pool of G proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular docking study of Papaver alkaloids to some alkaloid receptors

Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...

متن کامل

Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...

متن کامل

Opioid Receptors Gene Polymorphism and Heroin Dependence in Iran

Introduction: Genes often have multiple polymorphisms that interact with each other and the environment in different individuals. Variability in the opioid receptors can influence opiate withdrawal and dependence. In humans, A118G Single Nucleotide Polymorphisms (SNP) on μ-Opioid Receptor (MOR), 36 G>T in κ-Opioid Receptor (KOR), and T921C in the δ-Opioid Receptor (DOR) have been...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Direct and differential interaction of beta-arrestins with the intracellular domains of different opioid receptors.

beta-arrestins have been shown to play important roles in regulation of signaling and desensitization of opioid receptors in many in vivo studies. The current study was carried out to measure the direct interaction of beta-arrestins with two functional intracellular domains, the third intracellular loop (I3L) and the carboxyl terminus (CT), of delta-, mu-, and kappa-opioid receptors (DOR, MOR, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 315 3  شماره 

صفحات  -

تاریخ انتشار 2005